Multiple Kernel Clustering With Neighbor-Kernel Subspace Segmentation
نویسندگان
چکیده
منابع مشابه
Multiple Kernel Clustering
Maximum margin clustering (MMC) has recently attracted considerable interests in both the data mining and machine learning communities. It first projects data samples to a kernel-induced feature space and then performs clustering by finding the maximum margin hyperplane over all possible cluster labelings. As in other kernel methods, choosing a suitable kernel function is imperative to the succ...
متن کاملMultiple Kernel Clustering with Local Kernel Alignment Maximization
Kernel alignment has recently been employed for multiple kernel clustering (MKC). However, we find that most of existing works implement this alignment in a global manner, which: i) indiscriminately forces all sample pairs to be equally aligned with the same ideal similarity; and ii) is inconsistent with a well-established concept that the similarity evaluated for two farther samples in a high ...
متن کاملMultiple Kernel Clustering Framework with Improved Kernels
Multiple kernel clustering (MKC) algorithms have been successfully applied into various applications. However, these successes are largely dependent on the quality of pre-defined base kernels, which cannot be guaranteed in practical applications. This may adversely affect the clustering performance. To address this issue, we propose a simple while effective framework to adaptively improve the q...
متن کاملRatio-Based Multiple Kernel Clustering
Maximum margin clustering (MMC) approaches extend the large margin principle of SVM to unsupervised learning with considerable success. In this work, we utilize the ratio between the margin and the intra-cluster variance, to explicitly consider both the separation and the compactness of the clusters in the objective. Moreover, we employ multiple kernel learning (MKL) to jointly learn the kernel...
متن کاملComputer Vision-based Color Image Segmentation with Improved Kernel Clustering
Color image segmentation has been widely applied to diverse fields in the past decades for containing more information than gray ones, whose essence is a process of clustering according to the color of pixels. However, traditional clustering methods do not scale well with the number of data, which limits the ability of handling massive data effectively. We developed an improved kernel clusterin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2020
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2019.2919900